By Topic

Data extraction from wireless sensor networks using distributed fountain codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oka, A. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Lampe, L.

A Wireless Sensor Network (WSN) observes a natural field and aims to recreate it with sufficient fidelity at a, perhaps distant, Fusion Center (FC) using a wireless communication channel of arbitrary capacity. We propose a universal and power efficient method for such data extraction, based on Digital Fountain Codes (DFCs) and joint-source channel decoding. Our method implements a distributed `rate-lessiquest DFC which automatically tunes the number of transmissions to the channel capacity. Furthermore, instead of directly compressing the WSN data, we achieve rate reduction by treating the spatiotemporal dependencies in the field as an outer code, and jointly decoding this concatenation at the FC using a multi-stage iterative decoder. We demonstrate that a power efficiency close to the capacity-rate-distortion limit is achieved at moderate distortion levels, irrespective of the channel capacity or field dependencies. As compared to the traditional approach of source-channel separation, the proposed data extraction scheme is particularly attractive for WSN applications due its computationally simple encoding procedure, low latency and the ability to seamlessly trade-off fidelity of reconstruction for power consumption.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 9 )