By Topic

Improving the distance properties of turbo codes using a third component code: 3D turbo codes - [transactions letters]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Berrou, C. ; Inst. TELECOM, Univ. Europeenne de Bretagne, Brest, France ; Graell i Amat, A. ; Ould-Cheikh-Mouhamedou, Y. ; Saouter, Y.

Thanks to the probabilistic message passing performed between its component decoders, a turbo decoder is able to provide strong error correction close to the theoretical limit. However, the minimum Hamming distance (dmin) of a turbo code may not be sufficiently large to ensure large asymptotic gains at very low error rates (the so-called flattening effect). Increasing the dmin of a turbo code may involve using component encoders with a large number of states, devising more sophisticated internal permutations, or increasing the number of component encoders. This paper addresses the latter option and proposes a modified turbo code in which a fraction of the parity bits are encoded by a rate-1, third encoder. The result is a noticeably increased dmin, which improves turbo decoder performance at low error rates. Performance comparisons with turbo codes and serially concatenated convolutional codes are given.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 9 )