Cart (Loading....) | Create Account
Close category search window
 

Effect of magnetic field strength on deposition rate and energy flux in a dc magnetron sputtering system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ekpe, Samuel D. ; Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada ; Jimenez, Francisco J. ; Field, David J. ; Davis, Martin J.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.3222874 

Variations in the magnetic field strongly affect the plasma parameters in a magnetron sputtering system. This in turn affects the throughput as well as the energy flux to the substrate. The variation in the magnetic field in this study, for a dc magnetron process, is achieved by shifting the magnet assembly slightly away from the target. Measurements of the plasma parameters show that while the electron density at the substrate increases with decrease in magnetic field, the electron temperature decreases. The cooling of the electron temperature is consistent with results reported elsewhere. The deposition rate per input magnetron power is found to increase slightly with the decrease in magnetic field for the process conditions considered in this study. Results suggest that the energy flux to the substrate tends to show a general decrease with the shift in the magnet assembly.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:27 ,  Issue: 6 )

Date of Publication:

Nov 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.