Cart (Loading....) | Create Account
Close category search window
 

An information theoretic approach to the statistical linearization of MIMO stochastic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chernyshov, K.R. ; V.A. Trapeznikov Inst. of Control Sci., Moscow, Russia

A kind of problems appearing under identification of stochastic systems and concerned with applying nonlinear measures of dependence of random values (processes) is analyzed. Approaches using such a consistent measure of dependence as the Shannon's mutual information are considered. A constructive procedure of deriving a linear input/output model which is statistically equivalent to a multi input / multi output dynamic stochastic system driven by a white-noise Gaussian process is proposed. A key issue of such a procedure is using the condition of component-wise coincidence of the mutual information of the input and output processes of the system and the input and output processes of the model as an identification criterion. The approach enables one to derive explicit relationships determining elements of the weighting matrices of the linearized model. At that, using such an unreal preliminary assumption as a known joint probability distribution of the system and model output processes is eliminated.

Published in:

Control Applications, (CCA) & Intelligent Control, (ISIC), 2009 IEEE

Date of Conference:

8-10 July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.