By Topic

Design-space exploration of backplane receivers with high-speed ADCs and digital equalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hayun Chung ; Sch. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA ; Gu-Yeon Wei

High-speed backplane receivers based on front-end ADCs with digital equalization facilitate design reuse, portability, and flexibility to reconfigure itself and accommodate different channel environments. However, power and complexity of such receivers can be high and require thorough high-level exploration to optimize design tradeoffs. This paper presents a backplane receiver model consisting of a simple, accurate, experimentally-verified, and parameterized high-speed flash ADC and a configurable digital equalizer for design-space exploration. Simulations demonstrate tradeoffs between ADC and equalizer bit resolution while maintaining constant receiver performance.

Published in:

Custom Integrated Circuits Conference, 2009. CICC '09. IEEE

Date of Conference:

13-16 Sept. 2009