By Topic

Numerical Simulations of Pillar Structured Solid State Thermal Neutron Detector: Efficiency and Gamma Discrimination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Conway, A.M. ; Lawrence Livermore Nat. Lab., Livermore, CA, USA ; Wang, T.F. ; Deo, N. ; Cheung, C.L.
more authors

This paper reports numerical simulations of a three-dimensionally integrated, Boron-10 (10B) and Silicon p+, intrinsic, n+ (PIN) diode micropillar array for thermal neutron detection. The inter-digitated device structure has a high probability of interaction between the Si PIN pillars and the charged particles (alpha and 7Li) created from the neutron-10B reaction. In this paper, the effect of both the 3-D geometry (including pillar width, separation and height) and energy loss mechanisms are investigated via simulations to predict the neutron detection efficiency and gamma discrimination of this structure. The simulation results are demonstrated to compare well with the experimental data available at this time, for 7- and 12-mum tall micropillar arrays. This indicates that upon scaling the pillar height, a high efficiency thermal neutron detector is possible.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:56 ,  Issue: 5 )