By Topic

C-SPECT—A Clinical Cardiac SPECT/Tct Platform: Design Concepts and Performance Potential

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wei Chang ; Dept. of Diagnostic Radiol., Rush Univ. Med. Center, Chicago, IL, USA ; Ordonez, C.E. ; Haoning Liang ; Yusheng Li
more authors

Because of scarcity of photons emitted from the heart, clinical cardiac SPECT imaging is mainly limited by photon statistics. The sub-optimal detection efficiency of current SPECT systems not only limits the quality of clinical cardiac SPECT imaging but also makes more advanced potential applications difficult to be realized. We propose a high-performance system platform - C-SPECT, which has its sampling geometry optimized for detection of emitted photons in quality and quantity. The C-SPECT has a stationary C-shaped gantry that surrounds the left-front side of a patient's thorax. The stationary C-shaped collimator and detector systems in the gantry provide effective and efficient detection and sampling of photon emission. For cardiac imaging, the C-SPECT platform could achieve 2 to 4 times the system geometric efficiency of conventional SPECT systems at the same sampling resolution. This platform also includes an integrated transmission CT for attenuation correction. The ability of C-SPECT systems to perform sequential high-quality emission and transmission imaging could bring cost-effective high-performance to clinical imaging. In addition, a C-SPECT system could provide high detection efficiency to accommodate fast acquisition rate for gated and dynamic cardiac imaging. This paper describes the design concepts and performance potential of C-SPECT, and illustrates how these concepts can be implemented in a basic system.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:56 ,  Issue: 5 )