By Topic

A Multivariable Detection Device Based on a Capacitive Microphone and Its Application to Security

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Watanabe, K. ; Syst. Control Eng. Dept., Hosei Univ., Tokyo, Japan ; Ishigaki, T. ; Higuchi, T.

Any sensor for detecting a certain physical variable is more or less influenced by other physical variables, which are designated as “noise.” The objective in conventional sensor design has been to minimize the noise. In this paper, however, we make use of sensing devices that are easily influenced by multiple physical variables and make full use of their multisensing characteristic. We consider such devices as multiple-input-single-output sensors. First, the output signal derived from multiple input signals must be dissociated. The input signals resulting from physical phenomena have inherent characteristics and can mathematically be modeled. Application of a Kalman filter realized by such models can provide estimates of the state variables of all input models, and thus, the input signals are dissociated. As an example, a novel sensor based on a microphone is presented. This sensor can detect various variables such as pressure and acceleration in the frequency range of 0.1 Hz to 10 kHz, temperature, and even light emission. We apply the sensor to monitor the symptoms of fire, earthquake, and break-in by an intruder from within a house.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 7 )