Cart (Loading....) | Create Account
Close category search window
 

A CMOS Resistive Feedback Differential Low-Noise Amplifier With Enhanced Loop Gain for Digital TV Tuner Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Donggu Im ; Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Hong-Teuk Kim ; Kwyro Lee

A resistive feedback differential low-noise amplifier (LNA) with enhanced loop gain is implemented as a part of a digital TV (DTV) tuner using a 0.18-mum CMOS process. A voltage buffer having higher gain, higher linearity, and lower noise figure (NF) than those of the conventional differential source follower (DSF), which is called the differential hybrid voltage buffer (DHVB) in this paper, is designed by combining the common source amplifier and source follower. By adopting the DHVB with optimized performance as a voltage buffer of the conventional resistive feedback differential LNA, the loop gain of the LNA can be increased. This leads to a highly linear resistive feedback LNA with higher gain and lower NF compared to the conventional resistive feedback LNA. For the wide gain range, the proposed LNA includes the variable gain function based on the resistive attenuator employing the T-switch. The measurement results of the proposed LNA exhibit a maximum gain of 16 dB and a gain range of 50 dB. At maximum gain, the LNA shows an average NF of 2.8 dB, a third-order input-referred intercept point of -1 dBm, a second-order input-referred intercept point of 40 dBm, and S11 of under -9 dB in a frequency range from 48 to 860 MHz. The power consumption is 30.6 mW at a 1.8-V power supply and the chip area is 0.25 mm2.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:57 ,  Issue: 11 )

Date of Publication:

Nov. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.