By Topic

Predictive Direct Torque Control for Flux and Torque Ripple Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jef Beerten ; Dept. of Electr. Eng. (ESAT), Katholieke Univ. Leuven, Leuven, Belgium ; Jan Verveckken ; Johan Driesen

In this paper, a prediction scheme is presented to diminish both the torque and flux ripples in a direct torque control (DTC) induction motor drive. In a discrete implementation of the classical DTC scheme, the time delay associated with data processing results in additional torque and flux ripples. This part of the ripples can amount to a significant fraction of the overall ripple if the hysteresis bands are comparable to the maximum torque and flux variations in one sampling interval. This paper presents a prediction scheme with low computational complexity and low parameter sensitivity, both comparable to the standard DTC scheme. The prediction scheme can easily be extended to compensate for multiple time delays when the sampling frequency is raised but the computation time remains unchanged. Experimental results show the diminishing effect of the prediction scheme on the torque and flux ripples.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:57 ,  Issue: 1 )