By Topic

Peridynamic Theory for Thermomechanical Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kilic, B. ; Dept. of Aerosp. & Mech. Eng., Univ. of Arizona, Tucson, AZ, USA ; Madenci, E.

Thermomechanical modeling for interconnects and electronic packages is a difficult challenge, especially for material interfaces and films under 1 ??m dimension. Understanding and prediction of their mechanical failure require the simulation of material behavior in the presence of multiple length scales. However, the classical continuum theory is not capable of predicting failure without a posterior analysis with an external crack growth criteria and treats the interfaces having zero thickness. A new nonlocal continuum theory referred to as peridynamic theory offers the ability to predict failure at these length scales. This study presents a new response function as part of the peridynamic theory to include thermal loading. After validating this response function by comparing against the displacement predictions in benchmark problems against those of finite element method, the peridynamic theory is used to predict damage initiation and propagation in regions having dissimilar materials due to thermomechanical loading.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:33 ,  Issue: 1 )