By Topic

Depth Evaluation of Shallow Surface Cracks in Metals Using Rectangular Waveguides at Millimeter-Wave Frequencies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
McClanahan, A. ; Electr. & Comput. Eng. Dept., Missouri Univ. of Sci. & Technol., Rolla, MO, USA ; Kharkovsky, S. ; Maxon, A.R. ; Zoughi, R.
more authors

This paper presents a resonant technique, which is founded on previous extensive work on millimeter-wave surface crack detection and sizing, for the accurate depth evaluation of long and shallow surface damages (scratches or cracks), which are represented as rectangular slots, in metal plates. A crack in a metal plate may be considered a short-circuited rectangular waveguide, which presents certain resonant characteristics when its electrical depth coincides with a quarter of the operating wavelength. Furthermore, a shallow crack may be filled with a dielectric material to electromagnetically make it appear deeper and hence facilitate its depth evaluation. The resonant properties of a crack depend on the dielectric properties of the material filling the crack and the crack dimensions. It is shown that a slight amount of loss, which is associated with the dielectric material, causes a relatively significant and characteristic change in the reflection coefficient measured using a probing rectangular waveguide aperture. In particular, this change affects the magnitude of the reflection coefficient, which is an easier parameter to measure than the phase. This information, as a function of frequency, may then be used to determine the shallow crack depth. This paper presents the foundation of this technique at millimeter-wave frequencies, along with supporting electromagnetic simulations and experimental results.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 6 )