By Topic

Microwave Subsurface Imaging Using Direct Finite-Difference Frequency-Domain-Based Inversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qiuzhao Dong ; Smith Int. Inc.-Pathfinder, Houston, TX, USA ; Rappaport, C.M.

We have developed a new algorithm for electromagnetic inverse scattering problems in inhomogeneous media using finite-difference frequency-domain (FDFD) forward modeling, referred to as the FDFD-based inversion method. The key issue of this method is to build a linear expression for the inverse problem from an FDFD forward model by using Born approximation to neglect mutual coupling between scattered pixels and to then solve for the inverse coefficient matrix. An important advantage of this matrix-based method is that there is no need to specify a Green's function. As such, this inverse scattering algorithm is easily implemented and is robust to the heterogeneity in the background. We test the algorithm with a microwave subsurface object detection application using cross-well radar. The new method is compared with conventional inversion using Green's function-based Born approximation. Numerical experiments are presented for a 2-D borehole geometry for buried object detection in uniform soil and in multilayered soil backgrounds.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 11 )