By Topic

An Efficient Algorithm for Parametric WCET Calculation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bygde, S. ; Sch. of Innovation, Design & Technol., Malardalen Univ., Sweden ; Ermedahl, A. ; Lisper, B.

Static WCET analysis is a process dedicated to derive a safe upper bound of the worst-case execution time of a program. In many real-time systems, however, a constant global WCET estimate is not always so useful since a program may behave very differently depending on its configuration or mode. A parametric WCET analysis derives the upper bound as formula rather than a constant. This paper presents a new efficient algorithm that can obtain a safe parametric estimate of the WCET of a program. This algorithm is evaluated on a large set of benchmarks and compared to a previous approach to parametric WCET calculation. The evaluation shows that the new algorithm, to the cost of some imprecision, scales much better and can handle more realistic programs than the previous approach.

Published in:

Embedded and Real-Time Computing Systems and Applications, 2009. RTCSA '09. 15th IEEE International Conference on

Date of Conference:

24-26 Aug. 2009