By Topic

A Multi-scale Piecewise-Linear Feature Detector for Spectrogram Tracks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lampert, T.A. ; Dept. of Comput. Sci., Univ. of York, York, UK ; Pears, N.E. ; O'Keefe, S.

Reliable feature detection is a prerequisite to higher level decisions regarding image content. In the domain of spectrogram track detection and classification, the detection problem is compounded by low signal-to-noise ratios and high variation in track appearance. Evaluation of standard feature detection methods in the literature is essential to determine their strengths and weaknesses in this domain. With this knowledge, improved detection strategies can be developed. This paper presents a comparison of line detectors and a novel, multi-scale, linear feature detector able to detect tracks of varying gradients. We outline improvements to the multi-scale search strategies which reduce run-time costs. It is shown that the Equal Error Rates of existing methods are high, highlighting the need for research into novel detectors. Results demonstrate that the proposed method offers an improvement in detection rates when compared to other, state of the art, methods whilst keeping false positive rates low. It is also shown that a multi-scale implementation offers an improvement over fixed scale implementations.

Published in:

Advanced Video and Signal Based Surveillance, 2009. AVSS '09. Sixth IEEE International Conference on

Date of Conference:

2-4 Sept. 2009