By Topic

Frequency / duty cycle control of LCC resonant converter supplying high voltage very low frequency test systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Manli Hu ; Power Electron. & Electr. Drives, Paderborn Univ., Paderborn, Germany ; Frohleke, N. ; Bocker, J.

Very low frequency (VLF) high-voltage (HV) sinusoidal test waveforms are suitable for testing characteristics and insulation qualities of long buried power cables. Unlike as with conventional PWM converters, a newly developed LCC resonant inverter combined with a symmetrical three-stage voltage multiplier rectifier is introduced in this paper to generate VLF HV sinusoidal waves. Due to the wide ranges of output voltage and output load, both the switching frequency and the duty cycle are adopted as control variables. Based on a small-signal equivalent circuit model and a reduced-order transfer function, an average mode current controller is developed for the zero voltage switched LCC resonant converter generating up to 85 kV (RMS) at 0.1 Hz as test voltage. The theoretical analysis and design are verified by simulations and experimental measurements with a prototype setup.

Published in:

Power Electronics and Applications, 2009. EPE '09. 13th European Conference on

Date of Conference:

8-10 Sept. 2009