Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Analytical design of an axial flux permanent magnet in-wheel synchronous motor for electric vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Versèle, C. ; Electr. Eng. Dept., Fac. Polytech. de Mons, Mons, Belgium ; De Greve, Z. ; Vallee, F. ; Hanuise, R.
more authors

This paper deals with the analytical design of an axial flux permanent magnet (AFPM) in-wheel synchronous motor for electric vehicles (EVs). AFPM motor is a pancake-type high torque density motor that fits perfectly the wheel of an automobile vehicle and that can, thus, be easily and compactly integrated into the wheel. Therefore, AFPM motor seems to be a better choice than radial flux permanent magnet (RFPM) motor for this kind of application. First, a design program of AFPM synchronous motors developed by the authors in Matlab environment is presented and validated by experimental results. This program is very simple to use and useful during the first stage of the design of a new motor in order to evaluate its performances and overall dimensions with reasonable accuracy (although more sophisticated methods, such as Finite Element Analysis (FEA), are required in more advanced phases of the design). In a second time, this program is used to design one of the four in-wheel motors of an urban EV. The results confirm that AFPM motor is a competitive choice for this application. Indeed, it meets all the requirements of the EV and fits perfectly the shape and size of a classical rim of an automobile vehicle wheel. Moreover, the results are compared with those obtained for a more conventional RFPM motor. This comparison shows that AFPM motor is a better choice than RFPM motor for in-wheel motor applications.

Published in:

Power Electronics and Applications, 2009. EPE '09. 13th European Conference on

Date of Conference:

8-10 Sept. 2009