By Topic

Dynamic Multiway Segment Tree for IP Lookups and the Fast Pipelined Search Engine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yeim-Kuan Chang ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Yung-Chieh Lin ; Cheng-Chien Su

A dynamic multiway segment tree (DMST) is proposed for IP lookups in this paper. DMST is designed for dynamic routing tables that can dynamically insert and delete prefixes. DMST is implemented as a B-tree that has all distinct end points of ranges as its keys. The complexities of search, insertion, deletion, and memory requirement are the same as the existing multiway range tree (MRT) and prefix in B-tree (PIBT) for prefixes. In addition, a pipelined DMST search engine is proposed to further speed up the search operations. The proposed pipelined DMST search engine uses off-chip SRAMs instead of on-chip SRAMs because the capacity of the latter is too small to hold large routing tables and the cost of the latter is too expensive. By utilizing current FPGA and off-chip SRAM technologies, our proposed five-stage pipelined search engine can achieve the worst case throughputs of 33.3 and 41.7 million packets per second (Mpps) with 144-bit and 288-bit wide SRAM blocks, respectively. Furthermore, a straightforward extension of the pipelined search engine with multiple independent off-chip SRAMs can achieve the throughput of 200 Mpps which is equivalent to 102 Gbps for minimal Ethernet packets of size 64 bytes.

Published in:

Computers, IEEE Transactions on  (Volume:59 ,  Issue: 4 )