By Topic

Application of independent component analysis for activation detection in functional magnetic resonance imaging (FMRI) data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Akhbari, M. ; Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran ; Fatemizadeh, E.

In this extended summary, our aim is analyzing functional magnetic resonance imaging (fMRI) data by independent component analysis (ICA) in order to find regions of brain which were activated by neural activity in human brain. We employ the minimum description length (MDL) criterion to reduce the dimension of the data and estimate the number of components, which makes ICA work more efficiently. We also use a simple oscillating index method to select automatically the components of interest. MDL and oscillating index criteria have not already been used in applying ICA for analyzing fMRI data. In order to investigate the advantage of using MDL and oscillating index, we perform some experiments for both simulated and experimental fMRI dataset and show the results. In order to justify the performance, receiver operating characteristic (ROC) curve have been drawn.

Published in:

Statistical Signal Processing, 2009. SSP '09. IEEE/SP 15th Workshop on

Date of Conference:

Aug. 31 2009-Sept. 3 2009