Cart (Loading....) | Create Account
Close category search window
 

Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Berger, C.R. ; Dept. of Electr. & Comput. Eng., Univ. of Connecticut, Storrs, CT, USA ; Shengli Zhou ; Preisig, J.C. ; Willett, P.

In this paper, we present various channel estimators that exploit the channel sparsity in a multicarrier underwater acoustic system, including subspace algorithms from the array precessing literature, namely root-MUSIC and ESPRIT, and recent compressed sensing algorithms in form of Orthogonal Matching Pursuit (OMP) and Basis Pursuit (BP). Numerical simulation and experimental data of an OFDM block-by-block receiver are used to evaluate the proposed algorithms in comparison to the conventional least-squares (LS) channel estimator. We observe that subspace methods can tolerate small to moderate Doppler effects, and outperform the LS approach when the channel is indeed sparse. On the other hand, compressed sensing algorithms uniformly outperform the LS and subspace methods. Coupled with a channel equalizer mitigating intercarrier interference, the compressed sensing algorithms can handle channels with significant Doppler spread.

Published in:

OCEANS 2009 - EUROPE

Date of Conference:

11-14 May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.