By Topic

Text Detection and Localization in Complex Scene Images using Constrained AdaBoost Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shehzad Muhammad Hanif ; CNRS, UPMC Univ. Paris 06, Paris, France ; Lionel Prevost

We have proposed a complete system for text detection and localization in gray scale scene images. A boosting framework integrating feature and weak classifier selection based on computational complexity is proposed to construct efficient text detectors. The proposed scheme uses a small set of heterogeneous features which are spatially combined to build a large set of features. A neural network based localizer learns necessary rules for localization. The evaluation is done on the challenging ICDAR 2003 robust reading and text locating database. The results are encouraging and our system can localize text of various font sizes and styles in complex background.

Published in:

2009 10th International Conference on Document Analysis and Recognition

Date of Conference:

26-29 July 2009