By Topic

Learning and Adaptation for Improving Handwritten Character Recognizers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tewari, N.C. ; Int. Inst. of Inf. Technol., Hyderabad, India ; Namboodiri, A.M.

Writer independent handwriting recognition systems are limited in their accuracy, primarily due the large variations in writing styles of most characters. Samples from a single character class can be thought of as emanating from multiple sources, corresponding to each writing style. This also makes the inter-class boundaries, complex and disconnected in the feature space. Multiple kernel methods have emerged as a potential framework to model such decision boundaries effectively, which can be coupled with maximal margin learning algorithms. We show that formulating the problem in the above framework improves the recognition accuracy. We also propose a mechanism to adapt the resulting classifier by modifying the weights of the support vectors as well as that of the individual kernels. Experimental results are presented on a data set of 16,000 alphabets collected from 470 writers using a digitizing tablet.

Published in:

Document Analysis and Recognition, 2009. ICDAR '09. 10th International Conference on

Date of Conference:

26-29 July 2009