By Topic

A Novel Feature Extraction and Classification Methodology for the Recognition of Historical Documents

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Georgios Vamvakas ; Comput. Intell. Lab., Nat. Centre for Sci. Res. Demokritos, Athens, Greece ; Basilis Gatos ; Stavros J. Perantoni

In this paper, we present a methodology for off-line character recognition that mainly focuses on handling the difficult cases of historical fonts and styles. The proposed methodology relies on a new feature extraction technique based on recursive subdivisions of the image as well as on calculation of the centre of masses of each sub-image with sub-pixel accuracy. Feature extraction is followed by a hierarchical classification scheme based on the level of granularity of the feature extraction method. Pairs of classes with high values in the confusion matrix are merged at a certain level and higher level granularity features are employed for distinguishing them. Several historical documents were used in order to demonstrate the efficiency of the proposed technique.

Published in:

2009 10th International Conference on Document Analysis and Recognition

Date of Conference:

26-29 July 2009