By Topic

Recognition of Handwritten Chinese Characters by Combining Regularization, Fisher's Discriminant and Distorted Sample Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Leung, K.C. ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China ; Leung, C.H.

The problem of offline handwritten Chinese character recognition has been extensively studied by many researchers and very high recognition rates have been reported. In this paper, we propose to further boost the recognition rate by incorporating a distortion model that artificially generates a huge number of virtual training samples from existing ones. We achieve a record high recognition rate of 99.46% on the ETL-9B database. Traditionally, when the dimension of the feature vector is high and the number of training samples is not sufficient, the remedies are to (i) regularize the class covariance matrices in the discriminant functions, (ii) employ Fisher's dimension reduction technique to reduce the feature dimension, and (iii) generate a huge number of virtual training samples from existing ones. The second contribution of this paper is the investigation of the relative effectiveness of these three methods for boosting the recognition rate.

Published in:

Document Analysis and Recognition, 2009. ICDAR '09. 10th International Conference on

Date of Conference:

26-29 July 2009