By Topic

A novel cluster validity criterion for fuzzy C-regression models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chung-Chun Kung ; Dept. of Electr. Eng., Tatung Univ., Taipei, Taiwan ; Jui-Yiao Su ; Yi-Fen Nieh

This paper proposed a novel cluster validity criterion for fuzzy c-regression models (FCRM) clustering algorithm with hyper-plane-shaped clusters. We combined the concept of fuzzy hypervolume with the compactness validity function in the cluster validity criterion. The proposed cluster validity criterion determined the appropriate number of clusters by calculating the overall compactness and separateness of the FCRM partition. The simulation results demonstrated the validness and effectiveness of the proposed method.

Published in:

Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE International Conference on

Date of Conference:

20-24 Aug. 2009