Cart (Loading....) | Create Account
Close category search window
 

Skewed Rotation Symmetry Group Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seungkyu Lee ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., State College, PA, USA ; Yanxi Liu

We present a novel and effective algorithm for affinely skewed rotation symmetry group detection from real-world images. We define a complete skewed rotation symmetry detection problem as discovering five independent properties of a skewed rotation symmetry group: 1) the center of rotation, 2) the affine deformation, 3) the type of the symmetry group, 4) the cardinality of the symmetry group, and 5) the supporting region of the symmetry group in the image. We propose a frieze-expansion (FE) method that transforms rotation symmetry group detection into a simple, 1D translation symmetry detection problem. We define and construct a pair of rotational symmetry saliency maps, complemented by a local feature method. Frequency analysis, using Discrete Fourier Transform (DFT), is applied to the frieze-expansion patterns (FEPs) to uncover the types (cyclic, dihedral, and O(2)), the cardinalities, and the corresponding supporting regions, concentric or otherwise, of multiple rotation symmetry groups in an image. The phase information of the FEP is used to rectify affinely skewed rotation symmetry groups. Our result advances the state of the art in symmetry detection by offering a unique combination of region-based, feature-based, and frequency-based approaches. Experimental results on 170 synthetic and natural images demonstrate superior performance of our rotation symmetry detection algorithm over existing methods.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 9 )

Date of Publication:

Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.