By Topic

An artificial neural network algorithm and time series for improved forecasting of oil estimation: A case study of south korea and united kingdom (2001-2008)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

This paper presents an Artificial Neural Network (ANN) algorithm to improve oil production forecasting. ANN algorithm is developed by different data preprocessing methods and considering different training algorithms and transfer functions in ANN models. Bayesian regularization backpropagation (BR), Levenberg-Marquardt back propagation (LM) and Gradient descent with momentum and adaptive learning rate backpropagation (GDX) are used as training algorithms. Also, log-sigmoid and Hyperbolic tangent sigmoid are used as transfer functions. 240 ANN in 6 groups are examined with one to forthy neuron in hidden layer. The efficiency of constructed ANN models is examined in South Korea via mean absolute percentage error (MAPE). One of feature of the proposed algorithm is utilization of Autocorrelation Function (ACF) to define input variables whereas conventional methods use trial and error method. Monthly oil production in South Korea January 2001 to July 2008 is considered as the case of this study.

Published in:

Digital Ecosystems and Technologies, 2009. DEST '09. 3rd IEEE International Conference on

Date of Conference:

1-3 June 2009