Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Face recognition using integrated Discrete Cosine Transform and Kernel Fisher Discriminant Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Janahiraman, T.V. ; Dept of Electr. Eng., Univ. Tenaga Nasional, Kajang, Malaysia ; Omar, J. ; Farukh, H.N.

In face recognition applications, the dimension of the sample space is usually larger than the number of the samples in a training set. As a result, Fisher linear discriminant analysis (FLD) based methods suffers due to singularity problem (of scatter matrix). This situation is often referred as "small sample size" (SSS) problem. Moreover, FLD is a linear algorithm by nature. Hence, it fails to extract important information from nonlinear and complex data such as face image. To remedy this problem, this paper presents a new face recognition approach by integrating discrete cosine transform (DCT) and kernel Fisher discriminant analysis (KFDA). The DCT has the capability to compact the energy in an image and let the dimensionality of the input sample space to be reduced. Then, KFDA, a new variant of FLD, will be used to extract the most discriminating feature. This is performed by transforming the reduced DCT subset using a nonlinear kernel function to a high dimensional nonlinear feature space and then followed by the FLD step. Based on the extensive experiments performed on ORL database, the highest recognition accuracy of 95.375% is achieved with only 24 features.

Published in:

Computing & Informatics, 2006. ICOCI '06. International Conference on

Date of Conference:

6-8 June 2006