By Topic

Support vector machines for predicting protein-protein interactions using domains and hydrophobicity features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hany Alashwal ; Artificial Intelligence and Bioinformatics Laboratory, Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia ; Safaai Deris ; Razib M. Othman

Since proteins work in the context of many other proteins and rarely work in isolation, it is highly important to study protein-protein interactions to understand proteins functions. The interactions data that have been identified by high-throughput technologies like the yeast two-hybrid system are known to yield many false positives. As a result, methods for computational prediction of protein-protein interactions based on sequence information are becoming increasingly important. In this study, computational prediction of protein-protein interactions (PPI) from domain structure and hydrophobicity properties is presented. Protein domain structure and hydrophobicity properties are used separately as the sequence feature for the support vector machines (SVM) as a learning system. Both features achieved accuracy of about 80%. But domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.

Published in:

2006 International Conference on Computing & Informatics

Date of Conference:

6-8 June 2006