By Topic

Small-signal modeling and analysis of battery-supercapacitor hybrid energy storage systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu Zhang ; Dept. of Electr. & Comput. Eng., Univ. of Miami, Coral Gables, FL, USA ; Zhenhua Jiang ; Xunwei Yu

The battery/supercapacitor hybrid energy storage system actively combines two energy storage devices to achieve better power and energy performances. This paper presents a detailed small-signal mathematical model that can represent the dynamics of the converter-interfaced energy storage system around the steady-state operating point. This model takes into account the effects on the currents of a variety of factors such as the voltage-current characteristics of individual energy storage devices, power converter and filter parameters, and controller parameters. The proposed model considers the variations in the battery current, supercapacitor current and DC bus voltage as state variables, the variations in the power converter duty cycles as the control input, and the variations in the battery voltage, supercapacitor voltage and load current as external disturbances. Frequency-domain model and control strategies for the power sharing between the battery and supercapacitor are developed based on the small-signal model of the hybrid energy system. Frequency-domain characteristics of the open-loop and closed-loop systems are analyzed. Time-domain simulation is used to verify the system operation. The effects of system and controller parameters on the system performance are also studied.

Published in:

Power & Energy Society General Meeting, 2009. PES '09. IEEE

Date of Conference:

26-30 July 2009