By Topic

Document zone content classification for technical document images using Artificial Neural Networks and Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ibrahim, Z. ; Fac. of Comp. & Math. Sci., Univ. Technol. MARA, Shah Alam, Malaysia ; Isa, D. ; Rajkumar, R. ; Kendall, G.

Artificial Neural Networks (ANN) are a classic pattern classifier and widely applicable to various problems and are relatively easy to use. Three of the most popular ANNs are Multilayer Perceptron (MLP) with Backpropagation learning algorithm, Self Organizing Map (SOM) and Recurrent Neural Network (RNN). Support Vector Machines (SVM) have gained great interest in the last few years in pattern recognition. Thus, this research compares the recognition performance of text and non-text images (text, table, figure and graph) from technical document images based on the pixel intensity of various zones between BPNN, SOM, RNN and SVM. Symmetrical and non-symmetrical zoning algorithms were compared as input. 400 different datasets have been tested and the experiments indicate that SVM classification is superior to the other three classifiers. The experiments also indicate that the combination of symmetrical and non-symmetrical zoning design is better than non-symmetrical or symmetrical zoning only.

Published in:

Applications of Digital Information and Web Technologies, 2009. ICADIWT '09. Second International Conference on the

Date of Conference:

4-6 Aug. 2009