By Topic

Semi-automatic extraction and modeling of ontologies using Wikipedia XML Corpus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
de Silva, L. ; Sch. of Comput., Univ. of Colombo, Colombo, Sri Lanka ; Jayaratne, L.

This paper introduces WikiOnto: a system that assists in the extraction and modeling of topic ontologies in a semi-automatic manner using a preprocessed document corpus derived from Wikipedia. Based on the Wikipedia XML Corpus, we present a three-tiered framework for extracting topic ontologies in quick time and a modeling environment to refine these ontologies. Using natural language processing (NLP) and other machine learning (ML) techniques along with a very rich document corpus, this system proposes a solution to a task that is generally considered extremely cumbersome. The initial results of the prototype suggest strong potential of the system to become highly successful in ontology extraction and modeling and also inspire further research on extracting ontologies from other semi-structured document corpora as well.

Published in:

Applications of Digital Information and Web Technologies, 2009. ICADIWT '09. Second International Conference on the

Date of Conference:

4-6 Aug. 2009