By Topic

Performance comparison of FPGA, GPU and CPU in image processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shuichi Asano ; Systems and Information Engineering, University of Tsukuba, 1-1-1 Ten-ou-dai Ibaraki 305-8573 JAPAN ; Tsutomu Maruyama ; Yoshiki Yamaguchi

Many applications in image processing have high inherent parallelism. FPGAs have shown very high performance in spite of their low operational frequency by fully extracting the parallelism. In recent micro processors, it also becomes possible to utilize the parallelism using multi-cores which support improved SIMD instructions, though programmers have to use them explicitly to achieve high performance. Recent GPUs support a large number of cores, and have a potential for high performance in many applications. However, the cores are grouped, and data transfer between the groups is very limited. Programming tools for FPGA, SIMD instructions on CPU and a large number of cores on GPU have been developed, but it is still difficult to achieve high performance on these platforms. In this paper, we compare the performance of FPGA, GPU and CPU using three applications in image processing; two-dimensional filters, stereo-vision and k-means clustering, and make it clear which platform is faster under which conditions.

Published in:

2009 International Conference on Field Programmable Logic and Applications

Date of Conference:

Aug. 31 2009-Sept. 2 2009