Cart (Loading....) | Create Account
Close category search window
 

Self-Calibration of Biplanar Radiographic Images Through Geometric Spine Shape Descriptors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kadoury, S. ; Philips Res. North America, Briarcliff Manor, NY, USA ; Cheriet, F. ; Labelle, H.

This paper presents a novel self-calibration method of an X-ray scene applied for the 3-D reconstruction of the scoliotic spine. Current calibration techniques either use a cumbersome calibration apparatus or depend on manually identified landmarks to determine the geometric configuration, thus limiting routine clinical evaluation. The proposed approach uses high-level information automatically extracted from biplanar X-rays to solve the radiographic scene parameters. We first present a segmentation method that takes into account the variable appearance and geometry of a scoliotic spine in order to isolate and extract the silhouettes of the anterior vertebral body. By incorporating prior anatomical information through a Bayesian formulation of the morphological distribution, a multiscale spine segmentation framework is proposed for scoliotic patients. An iterative nonlinear optimization procedure, integrating a 3-D visual hull reconstruction and geometrical torsion properties of the spine, is then applied to globally refine the geometrical parameters of the 3-D viewing scene and obtain the optimal 3-D reconstruction. An experimental comparison with data provided from reference synthetic models yields similar accuracy on the retroprojection of low-level primitives such as anatomical landmarks identified on each vertebra (2.2 mm). Results obtained from a clinical validation on 60 pairs of uncalibrated digitized X-rays of adolescents with scoliosis show that the 3-D reconstructions from the new system offer geometrically accurate models with insignificant differences for 3-D clinical indexes commonly used in the evaluation of spinal deformities. The reported experiments demonstrate a viable and accurate alternative to previous reconstruction techniques, offering the first automatic approach for routine 3-D clinical assessment in radiographic suites.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 7 )

Date of Publication:

July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.