By Topic

Switching Control Technique of Phase-Shift-Controlled Full-Bridge Converter to Improve Efficiency Under Light-Load and Standby Conditions Without Additional Auxiliary Components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bo-Yuan Chen ; Center for Power Electron., Nat. Taipei Univ. of Technol., Taipei, Taiwan ; Yen-Shin Lai

The main theme of this paper is to propose a switching method to reduce the loss of phase-shift-controlled full-bridge converter under light-load and standby conditions. It will be shown that the efficiency can be improved using the proposed switching control technique. The presented switching control technique controls the full-bridge converter by pulsewidth-modulated (PWM) switching mode under light-load condition and PWM switching with burst mode under standby condition. The transition point between phase-shift switching method and the proposed method is investigated and confirmed by experimental results. A field-programmable-gate-array-based digital-controlled experimental system has been set up. The specifications of the converter include: input voltage = 400 V, output voltage = 12 V, and output power = 400 W. Experimental results show that the efficiency improvement can be up to 26% under light-load condition and the standby power is less than 1 W. These results confirm the effectiveness of the proposed switching control technique.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 4 )