By Topic

Robust Orientation Field Estimation and Extrapolation Using Semilocal Line Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gottschlich, C. ; Inst. for Math. Stochastics, Univ. of Goettingen, Goettingen, Germany ; Mihailescu, P. ; Munk, A.

Orientation field (OF) estimation is a crucial preprocessing step in fingerprint image processing. In this paper, we present a novel method for OF estimation that uses traced ridge and valley lines. This approach provides robustness against disturbances caused, e.g., by scars, contamination, moisture, or dryness of the finger. It considers pieces of flow information from a larger region and makes good use of fingerprint inherent properties like continuity of ridge flow perpendicular to the flow. The performance of the line-sensor method is compared with the gradients-based method and a multiscale directional operator. Its robustness is tested in experiments with simulated scar noise which is drawn on top of good quality fingerprint images from the FVC2000 and FVC2002 databases. Finally, the effectiveness of the line-sensor-based approach is demonstrated on 60 naturally poor quality fingerprint images from the FVC2004 database. All orientations marked by a human expert are made available at the journal's and the authors' Website for comparative tests.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:4 ,  Issue: 4 )