By Topic

Characterization of Three-Dimensional-Integrated Active Pixel Sensor for X-Ray Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Prigozhin, G. ; Kavli Inst. for Astrophys. & Space Res., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Suntharalingam, V. ; Busacker, D. ; Foster, R.F.
more authors

We have developed a back-illuminated active pixel sensor (APS) which includes an SOI readout circuit and a silicon diode detector array implemented in a separate high-resistivity wafer. Both are connected together using a per-pixel 3-D integration technique developed at Lincoln Laboratory. The device was fabricated as part of a program to develop a photon-counting APS for imaging spectroscopy in the soft X-ray (0.3-10-keV) spectral band. Here, we report single-pixel X-ray response with spectral resolution of 181-eV full-width at half-maximum at 5.9 keV. The X-ray data allow us to characterize the responsivity and input-referred noise properties of the device. We measured interpixel crosstalk and found large left-right asymmetry explained by coupling of the sense node to the source follower output. We have measured noise parameters of the SOI transistors and determined factors which limit the device performance.

Published in:

Electron Devices, IEEE Transactions on  (Volume:56 ,  Issue: 11 )