By Topic

High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ye Zhou ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA ; Huang, M.C.Y. ; Chase, C. ; Karagodsky, V.
more authors

We review recent advances in subwavelength high-index-contrast gratings (HCGs) and a variety of applications in optoelectronic devices, including vertical-cavity surface-emitting lasers (VCSELs), tunable VCSELs, high-Q optical resonators, and low-loss hollow-core waveguides (HWs). HCGs can serve as broadband (Delta lambda/lambda ~ 35%), high-reflectivity (>99%) mirrors for surface-normal incident light, which is useful to replace conventional distributed Bragg reflectors in optical devices. HCGs can also be designed as high-Q resonators with output coupling in the surface-normal direction. Finally, we discuss a novel design of HCG as shallow angle reflectors and HWs.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 5 )