Cart (Loading....) | Create Account
Close category search window

Optical Packet Network With Limited-Range Wavelength Conversion: A Novel Formalization of the Optimal Scheduling Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Detti, A. ; Dept. of Electron. Eng., Univ. of Rome Tor Vergata, Rome, Italy ; Parca, G. ; Carrozzo, V. ; Betti, S.

In this paper, we consider synchronous optical packet networks formed by switches equipped with a complete set of limited-range wavelength converters. On these networks, we dealt with scheduling algorithm that maximizes the switch throughput. So far, previous literature works have formalized this scheduling problem as the finding of a maximum bipartite matching (MBM) in a convex graph. The MBM formalization has collected various follow-ups, mainly focused on measuring switch-level performance. We revise the MBM formalization by measuring network-level performance. Surprisingly, we find out that when optical switches are cascaded, MBM formalization has two not negligible lacks: (1) a useless degradation of optical signal quality and (2) a tendency of shifting optical packets toward lower wavelengths, thus increasing the occurrence of wavelength contention. To solve these issues, we propose a novel formalization of the scheduling problem as the finding of a MBM with minimum edges weights (MW-MBM). We show that MW-MBM outperforms MBM in terms of both network throughput and optical SNR. Performance evaluation is carried out by means of NS2 simulator that we extend to toughly model optical components (e.g., semiconductor optical amplifier four-wave-mixing wavelength converter). The simulator is provided as open source.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 24 )

Date of Publication:

Dec.15, 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.