By Topic

An artificial neural network approach for remaining useful life prediction of equipments subject to condition monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zhigang Tian ; Concordia Inst. for Inf. Syst. Eng., Concordia Univ., Montreal, QC, Canada

Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. An artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life prediction of equipment subject to condition monitoring. The ANN model takes the age and multiple condition monitoring measurement values at the present and previous inspection points as the inputs, and the life percentage as the output. Techniques are introduced to reduce the effects of the noise factors that are irrelevant to equipment degradation. The proposed method is validated using real-world vibration monitoring data.

Published in:

Reliability, Maintainability and Safety, 2009. ICRMS 2009. 8th International Conference on

Date of Conference:

20-24 July 2009