By Topic

VLSI systolic arrays for adaptive nulling [radar]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rader, C.M. ; Lincoln Lab., MIT, Lexington, MA, USA

Presents a case study of the design of a computationally intensive system to do adaptive nulling of interfering signals for a phased-array radar with many antenna elements. The goal of the design was to increase the computational horsepower available for this problem by about three orders of magnitude under the tight constraints of size, weight and power which are typical of an orbiting satellite. By combining the CORDIC rotation algorithm, systolic array concepts, Givens transformations, and restructurable VLSI, we built a system as small as a package of cigarettes, but capable of the equivalent of almost three billion operations per second. Our work was motivated by the severe limitations of size, weight and power which apply to computation aboard a spacecraft, although the same factors impose costs which are worth reducing in other circumstances. For an array of N antennas, the cost of the adaptive nulling computation grows as N3, so simply using more resources when N is large is not practical. The architecture developed, called MUSE (matrix update systolic experiment) determines the nulling weights for N=64 antenna elements in a sidelobe cancelling configuration. After explaining the antenna nulling system, we discuss another DSP computation that might benefit from similar architecture, technology, or algorithms: the solution of Toeplitz linear equations

Published in:

Signal Processing Magazine, IEEE  (Volume:13 ,  Issue: 4 )