By Topic

Liver Vessels Segmentation Using a Hybrid Geometrical Moments/Graph Cuts Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Esneault, S. ; Inst. Nat. de la Sante et de la Rech. Medicale (INSERM), Rennes, France ; Lafon, C. ; Dillenseger, J.-L.

This paper describes a fast and fully automatic method for liver vessel segmentation on computerized tomography scan preoperative images. The basis of this method is the introduction of a 3-D geometrical moment-based detector of cylindrical shapes within the minimum-cut/maximum-flow energy minimization framework. This method represents an original way to introduce a data term as a constraint into the widely used Boykov's graph cuts algorithm, and hence, to automate the segmentation. The method is evaluated and compared with others on a synthetic dataset. Finally, the relevancy of our method regarding the planning of a necessarily accurate percutaneous high-intensity focused ultrasound surgical operation is demonstrated with some examples.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 2 )