By Topic

Chemometric Approach for Improving VCSEL-Based Glucose Predictions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fard, S.T. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Chrostowski, L. ; Kwok, E. ; Amann, Markus-Christian

Optical methods are one of the painless and promising techniques that can be used for blood glucose predictions for diabetes patients. The use of thermally tunable vertical cavity surface-emitting lasers (VCSELs) as the light source to obtain blood absorption spectra, along with the multivariate technique partial least squares for analysis and glucose estimation, has been demonstrated. With further improvements by using data preprocessing and two VCSELs, we have achieved a clinically acceptable level in the physiological range in buffered solutions. The results of previous experiments conducted using white light showed that increasing the number of wavelength intervals used in the analysis improves the accuracy of prediction. The average prediction error, using absorption spectra from one VCSEL in aqueous solution, is about 1.2 mM. This error is reduced to 0.8 mM using absorption spectra from two VCSELs. This result confirms that increasing the number of VCSELs improves the accuracy of prediction.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 3 )