By Topic

Mining Characteristic Relations Bind to RNA Secondary Structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qingfeng Chen ; Faculty of Science and Technology, Deakin University, Melbourne, Australia ; Yi-Ping Phoebe Chen

The identification of RNA secondary structures has been among the most exciting recent developments in biology and medical science. It has been recognized that there is an abundance of functional structures with frameshifting, regulation of translation, and splicing functions. However, the inherent signal for secondary structures is weak and generally not straightforward due to complex interleaving substrings. This makes it difficult to explore their potential functions from various structure data. Our approach, based on a collection of predicted RNA secondary structures, allows us to efficiently capture interesting characteristic relations in RNA and bring out the top-ranked rules for specified association groups. Our results not only point to a number of interesting associations and include a brief biological interpretation to them. It assists biologists in sorting out the most significant characteristic structure patterns and predicting structure-function relationships in RNA.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:14 ,  Issue: 1 )