By Topic

Computing Consistency Between Microarray Data and Known Gene Regulation Relationships

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Dong-Guk Shin ; Dept. of Comput. Sci. & Eng., Univ. of Connecticut, Storrs, CT, USA ; Saira A. Kazmi ; Baikang Pei ; Yoo-Ah Kim
more authors

Microarray experiments produce expression patterns for thousands of genes at once. On the other hand, biomedical literature contains large amounts of gene regulation relationship information accumulated over the years. One obvious requirement is an automated way of comparing microarray data with the collection of known gene regulation relationships. Such an automated comparison is imperative because it can help biologists rapidly understand the context of a given microarray experiment. In addition, the consistency measure can be used to either validate or refute the hypothesis being tested using the microarray experiment. In this paper we present a systematic way of examining the consistency between a given set of microarray data and known gene regulation relationships. We first introduce a simple gene regulation network model with two separate algorithms designed to isolate a maximally consistent network. Subsequently, we extend the model to take into account multiple regulating factors for a single gene while highlighting both consistencies and inconsistencies. We illustrate the effectiveness of our approach with two practical examples, one that picks the peroxisome proliferator-activated receptor (PPAR) pathway as highly consistent from multiple pathways of Kyoto encyclopedia of genes and genomes (KEGG), and another that isolates key regulatory relationships involving nfkb1 and others known for macrophage's counter response to inflammation.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:13 ,  Issue: 6 )