By Topic

The Brain-Machine Interface, Unplugged

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

In experiments and even limited human clinical trials, electrode arrays implanted on the brain's surface have given monkeys and humans the ability to move objects with their thoughts. The experiments are proof that brain-computer interfaces could improve the lives of severely paralyzed people. But these systems rely on wires snaking out from the skull, which would affect a person's mobility WWW.SPECTRUM.IEEE.ORG and leave an opening in the scalp prone to infection. Wireless brain-machine interfaces would be much more practical and could be implanted in several different areas of the brain to tap into more neurons. A typical scheme would have electrodes penetrating brain tissue, picking up neuronal electrical impulses, called spikes. A chip would amplify and process the signals and transmit them over a broadband RF connection through the skull to a receiver. Then, just as in wired systems, algorithms would decode these signals into commands for operating a computer or a robot.

Published in:

Spectrum, IEEE  (Volume:46 ,  Issue: 10 )