Cart (Loading....) | Create Account
Close category search window
 

Anomaly Detection in data streams using fuzzy logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Khan, M.U. ; Muhammad Ali Jinnah Univ., Karachi, Pakistan

Unsupervised data mining techniques require human intervention for understanding and analysis of the clustering results. This becomes an issue in dynamic users/applications and there is a need for real-time decision making and interpretation. In this paper we will present an approach to automate the annotation of results obtained from data stream clustering to facilitate interpreting that whether the given cluster is an anomaly or not. We use fuzzy logic to label the data. The results will be obtained on the basis of density function & the number of elements in a certain cluster.

Published in:

Information and Communication Technologies, 2009. ICICT '09. International Conference on

Date of Conference:

15-16 Aug. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.