By Topic

Image normalization for face recognition using 3D model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Riaz, Z. ; Dept. of Inf., Tech. Univ. of Munich, Munich, Germany ; Beetz, M. ; Radig, B.

This paper describes an image segmentation and normalization technique using 3D point distribution model and its counterpart in 2D space. This segmentation is efficient to work for holistic image recognition algorithm. The results have been tested with face recognition application using Cohn Kanade facial expressions database (CKFED). The approach follows by fitting a model to face image and registering it to a standard template. The models consist of distribution of points in 2D and 3D. We extract a set of feature vectors from normalized images using principal components analysis and using them for a binary decision tree for classification. A promising recognition rate of up to 98.75% has been achieved using 3D model and 92.93% using 2D model emphasizing the goodness of our normalization. The experiments have been performed on more than 3500 face images of the database. This algorithm is capable to work in real time in the presence of facial expressions.

Published in:

Information and Communication Technologies, 2009. ICICT '09. International Conference on

Date of Conference:

15-16 Aug. 2009