By Topic

Applying centroid based adjustment to kernel based object tracking for improving localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rashid Mehmood ; Muhammad Ali Jinnah University (MAJU), Pakistan ; Muhammad Usman Ali ; Imtiaz A. Taj

In recent studies kernel based object tracking (KBOT) using Bhattacharya coefficient as similarity measure is shown to be robust and efficient object tracking technique. Image histogram provides a compact summarization of the distribution of data in an image. Due to computational efficiency; histogram has been successfully applied in KBOT based tracking algorithms. However without spatial or shape information, similar objects of different color may be indistinguishable based solely on histogram comparisons. The application of meanshift algorithm (the core of KBOT) on 1-D low level features of histogram may converge to false local maxima and cause inaccuracy of target localization. In this paper we presented a robust and efficient tracking approach using structural features along with histogram based Bhattacharya coefficient similarity measure for tracking non rigid objects. It is proposed that integrating the edge based target information as post processing step for updating estimated mean shift centroid in KBOT improves the localization problem. Experimental results show the updated algorithm has achieve more precise tracking results as compared to original kernel based object tracking.

Published in:

Information and Communication Technologies, 2009. ICICT '09. International Conference on

Date of Conference:

15-16 Aug. 2009