By Topic

A Control Strategy for Upper Limb Robotic Rehabilitation With a Dual Robot System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Culmer, P.R. ; Sch. of Mech. Eng., Univ. of Leeds, Leeds, UK ; Jackson, A.E. ; Makower, S. ; Richardson, R.
more authors

This paper describes the development and use of the cooperative control scheme used by the intelligent pneumatic arm movement (iPAM) system to deliver safe, therapeutic treatment of the upper limb during voluntary reaching exercises. A set of clinical and engineering requirements for the control scheme are identified and detailed, which entail controlled, coordinated movement of a dual robot system with respect to the human upper limb. This is achieved by using a 6-DOF model of the upper limb that forms the controller's coordinate system. An admittance control scheme is developed by using this coordinate system such that robotic assistance can be varied as appropriate. Key controller components are derived, including kinematic and force transformations between the upper limb model and the dual robot task space. The controller is tested using a computational simulation and with a stroke subject in the iPAM system. The results demonstrate that the control scheme can reliably coordinate the dual robots to assist upper limb movements. A discussion considers the ramifications of using the system in practice, including the effects of measurement errors and controller limitations. In conclusion, the iPAM system has been shown to be effective at delivering variable levels of assistance to the upper limb joints during therapeutic movements in a clinically appropriate manner.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:15 ,  Issue: 4 )